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Abstract 

As a contribution to the discussion about possible effects of ethnicity/ancestry on age 

estimation based on DNA methylation (DNAm) patterns, we directly compared age-

associated DNAm in German and Japanese donors in one laboratory under identical 

conditions. DNAm was analysed by pyrosequencing for 22 CpG sites (CpGs) in the 

genes PDE4C, RPA2, ELOVL2, DDO and EDARADD in buccal mucosa samples from 

German and Japanese donors (N=368 and N=89, respectively). 

Twenty of these CpGs revealed a very high correlation with age and were subsequently 

tested for differences between German and Japanese donors aged between 10 and 

65 years (N=287 and N=83, respectively). ANCOVA was performed by testing the 

Japanese samples against age- and sex-matched German subsamples (N=83 each; 

extracted 500 times from the German total sample). The median p-values suggest a 

strong evidence for significant differences (p<0.05) at least for two CpGs (EDARADD, 

CpG 2 and PDE4C, CpG 2) and no differences for 11 CpGs (p>0.3). 

Age prediction models based on DNAm data from all 20 CpGs from German training 

data did not reveal relevant differences between the Japanese test samples and 

German subsamples. Obviously, the high number of included “robust CpGs” prevented 

relevant effects of differences in DNAm at two CpGs. 

Nevertheless, the presented data demonstrates the need for further research 

regarding the impact of confounding factors on DNAm in the context of 

ethnicity/ancestry to ensure a high quality of age estimation. One approach may be the 

search for “robust” CpG markers – which requires the targeted investigation of different 

populations, at best by collaborative research with coordinated research strategies. 

 

Key Words: Forensic age estimation, epigenetic age estimation, DNA Methylation, 

Impact of ancestry/ethnicity 
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Introduction 

Epigenetic age estimation based on DNA methylation (DNAm) holds the perspective 

of various forensic applications, e.g. for age estimation in persons without valid identity 

documents, the identification of unknown deceased or the identification of the donor of 

a trace. Many models for the estimation of chronological age based on DNA 

methylation have been proposed [1-4]; the best of them enabling age estimation with 

mean absolute errors (MAE) of approximately 3-5 years [5-8]. 

However, there is a growing perception that DNA methylation may be influenced by 

exogenous and endogenous factors (for review see [9-11]), that may be of relevance 

for age estimation based on DNAm. Against this background, Spolnicka et al. [12] 

claimed that ”studies aiming to identify all potential players influencing differences in 

DNA methylation at particular loci between individuals at the same chronological age 

are important […] for better accuracy of age prediction models”.  

In this context, the question of population-related differences in DNAm patterns and 

their impact on forensic age estimation has already been addressed [13-15]. Such 

differences may be even present at birth [16]. An association between DNAm, histone 

modifications and single-nucleotide polymorphisms (SNP) located at specific CpG 

sites (CpGs) has been interpreted as evidence for the genetic control of DNA 

methylation [17, 18]. Since SNP allele frequencies may differ considerably among 

populations of different ancestries, population-related differences in DNAm have been 

attributed to differences in population specific alleles or haplotypes [19-21]. Apart from 

such genetic factors, lifestyle and environmental factors may alter the DNAm pattern. 

There is strong evidence for such influences from many studies (for review see [11, 

22, 23]). Although the underlying mechanisms are not yet fully understood, there is 

evidence that genetic variations as well as living conditions (both addressed as 

“ethnicity/ancestry” in the following) may impact DNAm levels and induce population-

related differences [11, 22-24].  

Such differences in age-associated DNAm changes between different populations 

have been described [20, 24-27], and their impact on forensic age estimation based 

on DNAm has already been discussed [13-15]. Some of these studies were based on 

comparison of available Illumina BeadChip datasets of different groups, which may 

have batch effects that hamper a reliable comparison [24]. In several studies, already 

developed models were applied by other laboratories to another population, meaning 
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that the samples of the two populations were analysed in different labs [13, 14]. 

However, this approach cannot distinguish between methodological and actual 

population-related differences.  

To gain further insight into the relevance of different populations for targeted epigenetic 

age predictors, DNAm was analysed by pyrosequencing for 22 CpGs of five genes 

(PDE4C, RPA2, ELOVL2, DDO and EDARADD) in buccal mucosa samples from 

German and Japanese donors, applying an identical methodological protocol by only 

one laboratory.  

 

 

Material and Methods 

 

Sample collection 

Buccal mucosa samples were collected from 368 German donors (203 females, 

165 males; ages between 1 month and 94 years) from Germany, mainly from North 

Rhine-Westphalia and from 89 Japanese donors (55 females, 34 males; ages between 

8 and 87 years) after written consent. Twelve of the Japanese donors had been living 

in Düsseldorf/Germany for several years at the time of sampling. The majority of the 

remaining 77 Japanese samples were taken in Fukuoka Prefecture (N=59), the rest of 

the samples came from donors living in Ehime (N=9), Shizuoka (N=5) and Miyazaki 

(N=3) Prefectures, respectively. For one sample, the exact sampling location was 

unknown. 

 

DNA extraction, quantification and bisulfite conversion 

Genomic DNA from buccal swab samples of both groups was extracted using the 

NucleoSpin® Tissue Kit from Macherey-Nagel (Düren/Germany) according to the 

manufacturer's instructions with overnight lysis at 56°C. DNA was eluted in 100 µl BE 

buffer (as part of the extraction kit) and DNA extracts were stored at -20°C until further 

analysis. Quantitation was performed following manufacturer’s instructions using either 

the Applied Biosystems™ 7500 Real-Time PCR System (Waltham, 

Massachusetts/USA) and the Quantiplex® Pro Kit (Qiagen, Hilden/Germany) or the 
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QuantiFluor dsDNA Sample Kit (Promega, Madison, Wisconsin/USA) and Quantus 

Fluorometer (Promega, Madison, Wisconsin/USA).  

Bisulfite conversion was performed using either the EZ DNA Methylation-Gold™ Kit 

(Zymo Research, Irvine,California/USA) or the EpiTect Fast DNA Bisulfite Kit (Qiagen, 

Hilden/Germany), following the manufacturer’s instructions. If possible, the 

recommended amount of 200 ng to 500 ng input DNA was used but not less than 10 ng 

per reaction volume (as recommended in [28]).  

 

DNA methylation analysis by pyrosequencing (CpGs located in the genes 

PDE4C, RPA2, ELOVL2, DDO and EDARADD) 

Prior pyrosequencing Marker specific PCRs were performed either using the 

HotStarTaq Kit (Qiagen, Hilden/Germany) or the PyroMark PCR Kit (Qiagen, 

Hilden/Germany) under manufacturer’s conditions. Primer sequences were taken from 

the original papers [29-31]. Hereafter 10-20 µl of biotinylated PCR product was 

immobilized to 1 μl Streptavidin Sepharose™HP beads (GE Healthcare, Chicago, 

Illinois/USA). Sequencing primers were designed as described previously [29-31]. 

Pyrosequencing was performed using the PyroMark Q24 Advanced CpG Reagents Kit 

(Qiagen, Hilden/Germany) and the PyroMark Q24 Advanced System (Qiagen, 

Hilden/Germany). 

 

Testing for differences between DNAm in German and Japanese samples 

In both donor groups, the relationship between DNAm and chronological age was 

analysed by linear regression. For all CpGs (located in the genes PDE4C, RPA2, 

ELOVL2, EDARADD and DDO) Spearman correlation coefficients (R) were calculated.  

Due to the low number of Japanese individuals younger than 10 years and older than 

65 years, only German and Japanese individuals with ages between 10 to 65 years 

(N=287, N=83, respectively) were included in all further analyses.  

ANCOVA was performed to detect differences between the DNAm levels in the two 

populations; at a p-value<0.05 results were considered significant. To further address 

the effects of different samples sizes and compositions, ANCOVA was performed by 

testing the Japanese sample (N=83) against age- and sex-matched (all p>0.3) German 
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subsamples (N=83 each) that were extracted 500 times from the total German group. 

The medians of these 500 runs were calculated. 

 

Age estimation based on German trainings data: Modelling  

Modelling was based only on the data of individuals with ages between 10 and 65 

years and on all CpGs except for ELOVL2, CpG 7 and DDO, CpG 1 (exhibiting the 

weakest correlations between DNAm and age with R<0.75). 

Age prediction models were trained using a random forest algorithm with 

(chronological) age as the continuous target variable as well as the 20 CpG information 

and sex as features for prediction. The prediction forest consisted of 10.000 individual 

trees that were build from bootstrap-samples of the entire dataset using the curvature 

test. This test selected the split predictor that minimizes the p-value of chi-square tests 

of independence between each predictor, i.e., feature, and the response, i.e., age.  

Modelling was based on training data consisting of the data of the German donors 

under exclusion of extracted German test samples (see below), resulting in a strict 

separation between training and test data. The performance of the models were tested 

(a.) in the Japanese sample (N=83; Japanese test sample) and (b.) in age- and sex-

matched (all p>0.3) German subsamples (N=83 each). 

 

Age estimation based on German trainings data: Performance on the Japanese 

sample and on age- and sex- matched German test samples 

As a measure of prediction accuracy, the mean absolute errors (MAE) were calculated. 

The performance of age estimation based on the German training data was tested in 

the Japanese sample (Japanese test sample) and in age- and sex-matched German 

test samples, respectively. To minimize sampling effects, we did not rely on 

randomizing the German data into one training and one test set, but extracted 

83 German test samples 500 times from the total German sample. The 83 German test 

samples and the 83 Japanese samples were age- and sex-matched, each. Means and 

medians of the resulting 500 MAEs were calculated for each group.  

To detect biases with the consequence of systematic over- or underestimation, the 

mean deviation of the age gaps (the differences between estimated and chronological 
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ages) were calculated for all 500 runs, the means and medians of the resulting 500 

mean deviations were calculated in each group. 

 

 

Results 

 

Buccal swabs from German and Japanese donors: Very similar correlation 

between DNAm levels and age, but evidence for significant differences in DNAm 

at least at two CpG sites  

Analysis of the German and Japanese samples revealed age-associated DNAm levels 

and a mostly close correlation between DNAm and age in both donor groups, with 

similar correlation coefficients (Spearman R) between 0.95 (PDE4C, CpG1) and 

0.67 (ELOVL2, CpG 7) in Germans, and between 0.93 (PDE4C, CpG 1) and 

- 0.62 (DDO, CpG 1) in Japanese, respectively (Table 1). In both donor groups, DNAm 

levels increase at the CpGs of ELOVL2, PDE4C and RPA2, and decrease at 

EDARADD and DDO with increasing age (data for DDO and the CpGs of ELOVL2, 

PDE4C, EDARADD and RPA2 with the highest correlations between DNAm and age 

in Figure 1, for additional data see supplementary file, Table 3).  

CpG 7 in ELOVL2 and CpG 1 in DDO exhibited the weakest correlations between 

DNAm and age, with R<0.75. These CpGs were excluded from further analysis. 

The DNAm data for the 12 Japanese living in Germany (highlighted in Figure 1) appear 

to be very similar to those of equally old Japanese living in Japan. Due to the low 

number of cases no further statistical analysis was performed on this question.  

Despite the very similar correlation between DNAm and age in Germans and 

Japanese, there was evidence for significant differences in DNAm at least at two sites. 

An ANCOVA using the Japanese data and the data of age- and sex-matched German 

subsamples revealed median p-values of <0.05 after 500 runs for PDE4C (CpG 2), 

RPA2 (CpG3) and EDARADD (CpG 2). A median p-value close to 0.05 (0.0512) was 

calculated for ELOVL2 (CpG 8) (Table 2). The significance between the groups was 

most evident for EDARADD, CpG 2 (median p=0.0061, p<0.05 in 88.60% of 

500 runs/subsamples) and PDE4C, CpG 2 (median p=0.0132, p<0.05 in 79.16% of 
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500 runs/subsamples). On the other hand side, median p-values of >0.3 were 

calculated for 11 of the analysed CpGs (Table 2), indicating clearly no differences 

between Japanese and Germans.  

 

Age prediction by models based on German trainings data did not reveal 

relevant differences between the Japanese sample and the age-and sex-matched 

German test samples  

The means and medians of the MAEs calculated in 500 runs for the Japanese sample 

(Japanese test sample) and 500 different extracted age- and sex-matched German 

test samples were very similar (Germans: 4.14 years (mean), 4.14 years (median); 

Japanese: 4.38 years (mean), 4.38 years (median); Figure 2). 

There was no clear indication for biases resulting in a relevant systematic over- or 

underestimation of age, since the means as well as the medians of the mean deviation 

of the age gaps (from 500 runs) were very low in both test groups (Germans: 0.39 

years (mean), 0.39 years (median); Japanese: -0.40 years (mean), -0.39 years 

(median); Figure 3).  

 

 

Discussion 

 

The primary aim of this study was to contribute to the discussion about possible effects 

of ethnicity/ancestry on age estimation based on DNAm by a direct comparison of 

DNAm patterns in German and Japanese samples that were analysed in one lab under 

identical conditions. However, due to the inter-individual variability of DNAm within a 

population [32-34], very large numbers of samples have to be analysed to reliably 

prove differences between populations. Thus, the numbers of samples analysed here 

(287 German samples, 83 Japanese samples in the age range 10-65 years) is a clear 

limitation of this study. Moreover, the size and the composition of the two groups were 

very different.  
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To overcome these limitations at least partly, we did not compare the Japanese group 

with only one age- and sex-matched German group, but with 500 age-and sex-

matched German subgroups that were extracted from the total German group. The 

median p-values of 500 ANCOVA analyses allow much more robust conclusions than 

the p-values derived from just one analysis that includes only one randomly extracted 

German subgroup.  

The strategy of subsampling was also applied in testing the performance of age 

prediction (based on the German training data set) in German test groups versus the 

Japanese test group. In each run, the model for age estimation was calculated only on 

the basis of the remaining trainings data, thus allowing a strict separation between 

trainings data and test data. That means, that age estimation was performed in the 

Japanese test sample and in age- and sex-matched German test samples by 500 

different models. The median MAEs give a robust impression of the performance of 

age estimation in the German and Japanese group. This strategy is an approach to 

reduce the impact of sampling effects, if the number of samples is limited.  

The methodological approach of subsampling may be unusual and does not allow to 

present one model for age estimation (since, in fact 500 models were used). However, 

the aim of our work was not the presentation of a new model, but to gain further insight 

into the question of relevance of ethnicity/ancestry for age estimation based on DNAm.       

 

In both German and Japanese samples, the DNA-methylation levels in buccal swabs 

were age-associated at all analysed CpGs (in PDE4C, RPA2, ELOVL2, EDARADD 

and DDO). This finding was to be expected, since similar data have already been 

published [5, 13, 29-31]. Differences in correlation coefficients (Table 1) were only 

small and may not be over-interpreted in light of the different (and in the Japanese 

group) limited number of samples in the donor groups.  

Although the correlation between DNAm and age was very similar in Germans and 

Japanese, there was evidence of differences between the two groups in DNAm at 

some CpGs sites, most noticable in EDARADD (CpG 2) and PDE4C (CpG 2). For 

these sites, the median p-values of the 500 ANOVAs were p=0.0061 (EDARADD (CpG 

2)) and 0.0132 (PDE4C (CpG 2)), p-values<0.05 were calculated in 88.60% and 

79.16% of the 500 runs, respectively (Table 2). These results can be interpreted as 
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strong evidence for significant differences of DNAm at EDARADD (CpG 2) and PDE4C 

(CpG 2). The ANCOVA results for CpG 3 in RPA2 (median p-value of 0.0391, p-

values<0.05 in 56.88% of the 500 runs) at least suggest differences between the two 

groups.  

One can only speculate about the biological background of such differences in the DNA 

methylation pattern between Germans and Japanese. Basically, genetic variations as 

well as living conditions may play a role [11, 22, 23]. The Japanese population may be 

genetically more homogeneous than other populations [35-37]. If so, also genetically 

determined DNA methylation patterns may be more homogeneous in the Japanese 

population, making differences to other populations more prominent. The finding that 

the DNAm data for the Japanese living in Germany appeared to be within the range of 

the other Japanese data may be another indication for the relevance of genetic factors; 

however, only 15 Japanese living in Germany were examined. It would be interesting 

to conduct further research on this topic under inclusion of a higher number of cases. 

If there is evidence for differences in the DNA methylation pattern at some CpGs, the 

question arises, if this may be relevant for age estimation models that include DNAm 

data of such CpGs. Our results demonstrated that means and medians of the MAEs 

were very similar in the German and Japanese cohort, and there was no clear 

indication for biases resulting in a relevant systematic over- or underestimation of age.  

These findings do not contradict the evidence for significant differences in the DNAm 

levels at some CpGs in different genes. The age prediction models were based on data 

of 20 CpGs, for only two (to three) of them the ANCOVA analyses revealed evidence 

for differences between Japanese and Germans. Obviously, the high number of 

included “robust CpGs” (11 CpGs exhibited median p-values>0.3, see Table 2) 

prevented relevant effects of the differences in DNAm at two CpGs.  

Nevertheless, our findings emphasize the impact of the ethnicity/ancestry on DNAm 

and are in line with the findings of other groups. Cho et al. [14] applied the age 

prediction model of Zbieć –Piekarska et al. [38] (derived from a Polish population, 

markers located in the genes ELOVL2, C1orf132, TRIM59, KLF14, and FHL2 genes) 

to blood samples from 100 Koreans. The authors reported that the age predictive 

performance of the model “is relatively consistent across different population groups”, 

although “the extent of the age association in Koreans was not identical to that of the 
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Polish”, in particular at the loci FHL2 and C1orf132. Fleckhaus et al. [15] analysed 

DNAm at five CpG sites in the genes ASPA, ITGA2B, PDE4C and ELOVL2 in buccal 

mucosa samples of three independent population groups from Middle East, West 

Africa and Central Europe and reported “first evidence that the strength of correlation 

between methylation and chronological age and thus the accuracy of age prediction 

may vary between populations”. Thong et al. [13] analysed blood samples from a local 

population comprising Chinese, Malays and Indians (CpG sites in the genes ELOVL2, 

KLF14, TRIM59 and FHL2) and established age prediction models on the basis of the 

data from all three subpopulations. Using this model, they did not observe significant 

age prediction errors among the Chinese, Malays and Indians. In contrast, notable 

differences in prediction accuracy were observed when the model was applied to a 

Polish and a French population (by using DNAm data reported by [5, 38]), the Polish 

samples were systematically underestimated. As possible reasons for these 

differences, the authors propose “methodology and instrumental variations during 

bisulfite conversion and/or pyrosequencing”.  

Such methodological effects can be excluded for the here presented data of buccal 

mucosa samples of German and Japanese donors. These data suggest significant 

differences between the investigated populations in the methylation of at least two 

analysed CpGs (EDARADD (CpG 2) and PDE4C (CpG 2)). Based on the presented 

data it cannot deduced, if the findings are just a matter of these two populations 

(Germans/Japanese), but the very possibility of such a problem should led to caution.  

Forensic science should further address the influence of ethnicity/ancestry to optimize 

the potential of age estimation based on DNAm; a need for research has been already 

stated by others [9, 13, 15, 39, 40]. Thong et al. [13] suggested the retraining of age 

prediction models, if they are to be applied to individuals of other populations. This 

suggestion implies that retrained models are developed for all relevant populations and 

that the assignment of an unknown donor of a trace or a non-identified deceased to a 

specific population is known. Fleckhaus et al. [15] proposed “to include ancestry 

informative markers into the analysis as an additional factor for age prediction models”. 

Another approach would be to identify “robust” CpGs as basis for age prediction 

models that can be used regardless of the population-of-origin. Whatever approach is 

chosen - the targeted investigations of different populations is required at best by 

collaborative research with coordinated research strategies. 
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